DOI: 10.32758/2782-3040-2021-1-1-55-61
УДК 665.6/.7
S. F. Valeev, F. R. Zainullov, A. V. Sulimov, M. V. Zheleznov.
(Lukoil-Engineering Skills and Competencies LLC, Nizhny Novgorod, Russia)
Применение процессов термической деструкции для переработки полимерных отходов
Keywords: polymer waste, recycling, thermolysis, ecology, petroleum refining.
Abstract. A comprehensive study of thermal destruction of household and industrial polymeric materials wastes by the thermolysis method was carried out on the pilot plant. A mixture containing polyethylene, polypropylene, polystyrene and polyethylene terephthalate was considered as household polymeric waste. Individual industrial waste was represented by polyethylene, polypropylene and polystyrene. The
influence of the composition of polymer waste, the temperature of the thermolysis process on the yield
of gaseous and liquid products has been studied. A detailed analysis of the resulting products was carried out, their qualitative and quantitative composition was investigated. It was found that the change
in temperature, duration of thermal processing, as well as the nature of polymer waste, allows us to control the composition and quality of the resulting products. The negative role of processing additives at the stage of polymer recycling is noted. It is shown that the thermolysis process is an effective tool for recycling polymer waste.
References
1. R. R. Gimaletdinov, M. R. Usmanov, S. F. Valeev, F. R. Zainullov, A. V. Sulimov. Application of Oil Refining Technologies for the Recycling of Polymer Waste at Coking Plants // Ecology and Industry of Russia. 2021. Vol. 25. Iss. 1. Р. 9–13.
2. G. Lopez, M. Artetxe, M. Amutio, J. Alvarez, J. Bilbao, M. Olazar. Recent advances in the gasification
of waste plastics. A critical overview, Renew. Sustain. Energy Rev. 2018. Vol. 82. P. 576–596.
3. J. V. Milato, R. J. França, Marques Calderari M. R. C. Co-pyrolysis of oil sludge with polyolefins: Evaluation of different Y zeolites to obtain paraffinic products // J. Environ. Chem. Eng. 2020. Vol. 8.
4. S. Tomasek, Z. Varga, J. Hancsók. Production of jet fuel from cracked fractions of waste polypropylene and polyethylene, Fuel Process // Technol. 2020. Vol. 197.
5. B. Kunwar, H. N. Cheng, S. R. Chandrashekaran, B. K. Sharma. Plastics to fuel: a review, Renew. Sustain. Energy Rev. 2016. Vol. 54. P. 421–428.
6. D. S. Hetrrero. Glycolysis process for polyurethane waste recycling. 2017. Ciudad Real. Tesis doctoral. Universidad de Castilla-La Mancha.
7. R. V. Gadhave, Sh. Srivastava, P. A. Mahanwar, P. T. Gadekar. Recycling and disposal methods for
polyurethane wastes: a review. Open Journal of Polymer Chemistry. 2019. Vol. 9. P. 35–51.
8. P. T. Williams, E. Slaney. Analysis of products from the pyrolysis and liquefaction of single plastics
and waste plastic mixtures // Resour. Conserv. Recycl. 2016. Vol. 54. P. 421–428.
9. B. K. Sharma, B. R. Moser, K. E. Vermillion, K. M. Doll, N. Rajagopalan. Production, characterization
and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Process //
Technol. 122 (2014) 79–90.
10. D. S. Achilias, C. Roupakias, P. Megalokonomosa, A. A. Lappas, E. V. Antonakou. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP) // J Hazard Mater. 2007. Vol. 149. P. 536–542.
11. Study in production conditions of the influence of
calcium carbonate additive on the strength of polypropylene thread / R. P. Medvedev, N. P. Shabelskaya // Challenges of the time and the world’s leading scientific centers. Collection of articles of the International Scientific and Practical Conference. In 2 parts. 2019. Р. 6–9.
12. Yu. A. Moskvichev, V. Sh. Feldblum. Chemistry in our life (products of organic synthesis and their application): monograph. Yaroslavl: YAGTU Publishing House, 2007. 411 p.
13. A. I. Khristoforov, V. A. Toropova. Reducing the flammability of the polymer. Fire retardants // Scientific space: topical issues, achievements and innovations. Collection of scientific papers based on the materials of the VI International Scientific and Practical Conference. 2019. Р. 32–36.
14. T. Matsuba, M. Kubo, T. Kagawa, K. Koyama (Toso K. K.). Japanese Application 1149767 (1987).
RJCh. 1990. No. 17. 17N194P.
15. A. V. Lukashov, A. I. Kuzaev. Development of polymer materials with enhanced radioprotective properties // Bulletin of MGSU. 2007. No. 1. Р. 57–59.
16. A. R. Mikheeva, S. V. Ilyushina, A. N. Minyazova, I. V. Krasina. Methods for increasing the resistance of polymer materials to ultraviolet radiation // The paradigmatic nature of fundamental and applied scientific research, their genesis. Collection of scientific articles on the results of the National Scientific and Practical Conference. 2019. Р. 110–111.
17. T. A. Kuchmenko, V. I. Korchagin, E. V. Drozdova, N. V. Erofeeva, A. V. Protasov. Assessment of the degree of destruction of films made of oxo-biodegradable polyethylene under the influence of UV radiation according to the information of the «electronic nose» // Vestn. Moscow un. 2017. Ser. 2. Chemistry. Vol. 58. No. 5.
18. O. V. Ershova, O. A. Mishurina. Destruction of polymer films modified with the oxybiodegradable
additive D2W // Success of modern natural science. 2016. No. 11.